Question Number	Answer	Mark
1(a)	(Trace) always positive/not negative/not below 0/ if it was AC the graph would be positive and negative Indicating one/same direction	(1) (1)
1(b)(i)	Capacitor stores charge/charges up (If voltage is constant) capacitor doesn't discharge	(1) (1)
1(b)(ii)	Recall of E = $\frac{1}{2}$ CV ² or use of Q=CV and QV/2 Substitution of C and any reasonable V [ignore power of 10 for C] eg = $\frac{1}{2}$ 10 x 10 ⁻⁶ x 5.5 ² /5.6 ² = 1.5 x 10 ⁻⁴ - 1.6 x 10 ⁻⁴ J	(1) (1) (1)
1(c)(i)	Capacitor charges up From the supply (then) Capacitor discharges Through circuit / exponentially	(1) (1) (1) (1) (max 3)
1(c)(ii)	Corresponding time interval for a change in V eg 6-7 ms for $\Delta V = 2V$ V = V _o e ^{-t/RC} or rearrangement seen [eg Ln 0.7 = 6 x10 ⁻³ /RC] R approx 1700 Ω (allow 1600 – 1800)	(1) (1) (1)
	or Time constant = $14 - 20$ ms T = RC seen R approx 1700 Ω (allow 1600 - 1800) or	(1) (1) (1)
	Corresponding time interval for a change in V eg 6-7 ms for $\Delta V = 2V$ Q = C V and I = Q/t seen R approx 1700 Ω (allow 1600 – 1800)	(1) (1) (1)
1(c)(iii)	Use larger capacitor	(1)
	Total for question 16	14

Question Number	Answer		Mark
2 (a)	Use of $Q = CV$ Q = 0.18 C	(1) (1)	2
	Example of calculation $Q = 150 \times 10^{-6} \text{ F} \times 1200 \text{ V}$ Q = 0.18 C		
2(b)	Use of $W = \frac{1}{2} CV^2$ Or of $W = \frac{1}{2} QV$ Or of $W = \frac{1}{2} Q^2/C$ W = 110 J Allow ecf from (a) if $\frac{1}{2} QV$ or $\frac{1}{2} Q^2/C$ used	(1) (1)	2
	Example of calculation $W = \frac{1}{2} \times 150 \times 10^{-6} \text{ F} \times (1200 \text{ V})^2$ W = 108 J		
2(c)(i)	$R = 86 (\Omega)$	(1)	
	Example of calculation R = V/I = 1200 V / 14 A $R = 85.7 \Omega$		
2(c)(ii)	$Q = 0.25 Q_0 \text{ Or } Q = 0.045 \text{ C}$ Use of <i>RC</i> (0.013 s) Use of <i>Q</i> = <i>Q</i> ₀ e ^{-t/RC} to give <i>t</i> = 0.018 s (show that value will give <i>t</i> = 0.019 s)	(1) (1) (1)	3
	[Use of ln 4 gives the correct answer if the – sign is ignored, scores 1 for use of RC use of $^{3}4Q \rightarrow 3.7 \times 10^{-3}$ s scores 1 mark]		
	Or Use of RC Use of $2 \times 0.69 \times RC$ t = 0.018 s		
	Example of calculation $Q = 0.25 Q_0$ $Q = Q_0 e^{-t/RC}$ $0.25 Q_0 = Q_0 e^{-t/RC}$ $\ln (0.25) = -t/(86 \Omega \times 150 \times 10^{-6} \text{ F})$ t = 0.0178 s		
2(c)(iii)	Same charge (flows for shorter time) OR (Same charge flows for) shorter time	(1)	1
	Total for question 15		9

Question Number	Answer		Mark
3(a)(i)	Capacitor charges up Or p.d. across capacitor becomes (equal to) p.d. of cell	(1)	
	Negative charge on one plate and positive charge on the other Or opposite charges on each plate Or movement of electrons from one plate and to the other (around the circuit)	(1)	2
	circuit) (Reference to positive charges moving or to charge moving directly between the plates negates the second mark)	(1)	2
3(a)(ii)	As capacitor charges current decreases		
	Or As capacitor charges current drops to zero Or p.d. across capacitor becomes (equal to) p.d. of cell	(1)	
	No current through R (means no p.d.)		
	Or $V_{\text{cell}} = V_{\text{capacitor}} + V_{\text{resistor}}$	(1)	2
*3(b)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	See Q=CV	(1)	
	As C increased then charge flows (Or more charge stored) on capacitor	(1)	
	So p.d. across R Charge flow / current /output signal reversed when plates move apart	(1) (1)	
	Or		
	See Q=CV	(1)	
	As C increased p.d. across capacitor decreased So p.d. across R must increase	(1) (1)	
	p.d. reverses when plates move apart	(1)	4
3(c)	Use of time constant = RC Or attempt to find half life	(1)	
	Time constant = 0.005 (s) Or t $_{\frac{1}{2}} = 0.0035$ (s)	(1)	
	Use of $T = 1/f$ (to give $T = 0.05$ s for the lowest audible frequency)	(1)	
	Capacitor completes discharging/charging during cycle of signal	(1)	4
	(last mark can only be gained if supported by calculations)		
	(f = 1/CR may be used to find the 'frequency of the microphone', rather		
	than time. In this case candidates may just calculate $f = 200$ Hz rather than a time. Only first 3 marks are available)		
	Example of calculation $RC = 10 \times 10^{6} \Omega \times 500 \times 10^{-12} $ F		
	RC = 0.005 s		
	F = 1/T = 1/20 = 0.05 s Total for question 16		12

Question Number	Answer		Mark
4(a)(i)	Discharges / loses charge Idea that discharge is not instantaneous [e.g. over period of time, gradually, exponential]	(1) (1)	2
4(a)(ii)	Decay curve starting on y-axis and not reaching x-axis [no rise at the end] Initial current marked 2 mA X-axis labelled such that $T_{\frac{1}{2}} = 0.02$ to 0.06 s	(1)(1)(1)	3
4(a)(iii)	Same graph On negative side of current axis/current in the opposite direction	(1) (1)	2
4(b)	Use of $W = \frac{1}{2} CV^2 / \text{Use of } Q = CV \text{ and } W = \frac{1}{2} QV$ $W = 5 \times 10^{-4} \text{ J}$ <u>Example of calculation</u> $W = \frac{1}{2} (10 \times 10^{-6} \text{ F}) (10 \text{ V})^2$ $W = 5 \times 10^{-4} \text{ J}$	(1) (1)	2
4(c)	Use of $\ln V/V_0 = (-) t/RC$ or $V = V_0 e^{-t/RC}$ with V and V_0 correct t = 0.13 s <u>Example of calculation</u> $\ln(10 \text{ V}/0.7 \text{ V}) = t / 0.05$ s t = 0.13 s	(1) (1)	2
	Total for question 15		11