Question Number	Answer	Mark
1(a)	(Trace) always positive/ not negative/ not below 0/ if it was AC the graph would be positive and negative Indicating one/ same direction	(1)
1(b)(i)	Capacitor stores charge/ charges up (If voltage is constant) capacitor doesn't discharge	(1) (1)
1(b)(ii)	Recall of $E=1 / 2 \mathrm{CV}^{2}$ or use of $\mathrm{Q}=\mathrm{CV}$ and $\mathrm{QV} / 2$ Substitution of C and any reasonable V [ignore power of 10 for C] $\begin{aligned} & \mathrm{eg}=1 / 210 \times 10^{-6} \times 5.5^{2} / 5.6^{2} \\ & =1.5 \times 10^{-4}-1.6 \times 10^{-4} \mathrm{~J} \end{aligned}$	(1) (1) (1)
1(c)(i)	Capacitor charges up From the supply (then) Capacitor discharges Through circuit / exponentially	(1) (1) (1) (1) $(\max 3)$
1(c)(ii)	Corresponding time interval for a change in V eg 6-7 ms for $\Delta \mathrm{V}=2 \mathrm{~V}$ $V=V_{0} e^{-t / R C}$ or rearrangement seen [eg Ln $0.7=6 \times 10^{-3} / \mathrm{RC}$] R approx 1700Ω (allow 1600-1800) or Time constant $=14-20 \mathrm{~ms}$ $\mathrm{T}=\mathrm{RC}$ seen R approx 1700Ω (allow 1600-1800) or Corresponding time interval for a change in V eg 6-7 ms for $\Delta \mathrm{V}=2 \mathrm{~V}$ $\mathrm{Q}=\mathrm{C} V$ and $\mathrm{I}=\mathrm{Q} / \mathrm{t}$ seen R approx 1700Ω (allow 1600-1800)	(1) (1) (1) (1) (1) (1) (1) (1) (1)
1(c)(iii)	Use larger capacitor	(1)
	Total for question 16	14

Question Number	Answer		Mark
2(a)	Use of $Q=C V$ $Q=0.18 \mathrm{C}$ Example of calculation $\begin{aligned} & Q=150 \times 10^{-6} \mathrm{~F} \times 1200 \mathrm{~V} \\ & Q=0.18 \mathrm{C} \end{aligned}$	(1) (1)	2
2(b)	Use of $W=1 / 2 C V^{2}$ Or of $W=1 / 2 Q V$ Or of $W=1 / 2 Q^{2} / C$ $W=110 \mathrm{~J}$ Allow ecf from (a) if $1 / 2 Q V$ or $1 / 2 Q^{2} / C$ used Example of calculation $\begin{aligned} & W=1 / 2 \times 150 \times 10^{-6} \mathrm{~F} \times(1200 \mathrm{~V})^{2} \\ & W=108 \mathrm{~J} \end{aligned}$	(1) (1)	2
2(c)(i)	$R=86(\Omega)$	(1)	
2(c)(ii)	$Q=0.25 Q_{0} \text { Or } Q=0.045 \mathrm{C}$ Use of $R C$ (0.013 s) Use of $Q=Q_{0} \mathrm{e}^{-t R C}$ to give $t=0.018 \mathrm{~s}$ (show that value will give $t=0.019 \mathrm{~s}$) [Use of $\ln 4$ gives the correct answer if the - sign is ignored, scores 1 for use of $R C$ use of $3 / 4 \mathrm{Q} \rightarrow 3.7 \times 10^{-3} \mathrm{~s}$ scores 1 mark$]$ Or Use of $R C$ Use of $2 \times 0.69 \times R C$ $t=0.018 \mathrm{~s}$ Example of calculation $\begin{aligned} & Q=0.25 Q_{0} \\ & Q=Q_{0} \mathrm{e}^{-t / R C} \\ & 0.25 Q_{0}=Q_{0} \mathrm{e}^{-t / R C} \\ & \ln (0.25)=-\mathrm{t} /\left(86 \Omega \times 150 \times 10^{-6} \mathrm{~F}\right) \\ & t=0.0178 \mathrm{~s} \\ & \hline \end{aligned}$	(1) (1) (1)	3
2(c)(iii)	Same charge (flows for shorter time) OR (Same charge flows for) shorter time	(1)	1
	Total for question 15		9

Question Number	Answer	Mark
3(a)(i)	Capacitor charges up Or p.d. across capacitor becomes (equal to) p.d. of cell Negative charge on one plate and positive charge on the other Or opposite charges on each plate Or movement of electrons from one plate and to the other (around the circuit) (Reference to positive charges moving or to charge moving directly between the plates negates the second mark)	(1)

Question Number	Answer		Mark
4(a)(i)	Discharges / loses charge Idea that discharge is not instantaneous [e.g. over period of time, gradually, exponential]	(1) (1)	2
4(a)(ii)	Decay curve starting on y-axis and not reaching x-axis [no rise at the end] Initial current marked 2 mA X -axis labelled such that $\mathrm{T}_{1 / 2}=0.02$ to 0.06 s	(1) (1) (1)	3
4(a)(iii)	Same graph On negative side of current axis/current in the opposite direction	(1) (1)	2
4(b)	Use of $W=1 / 2 C V^{2} /$ Use of $Q=C V$ and $W=1 / 2 Q V$ $W=5 \times 10^{-4} \mathrm{~J}$ Example of calculation $\begin{aligned} & W=1 / 2\left(10 \times 10^{-6} \mathrm{~F}\right)(10 \mathrm{~V})^{2} \\ & W=5 \times 10^{-4} \mathrm{~J} \end{aligned}$	(1) (1)	2
4(c)	Use of $\ln V / V_{0}=(-) t / R C$ or $V=V_{0} \mathrm{e}^{-t / R C}$ with V and V_{0} correct $t=0.13 \mathrm{~s}$ $\begin{aligned} & \text { Example of calculation } \\ & \ln (10 \mathrm{~V} / 0.7 \mathrm{~V})=t / 0.05 \mathrm{~s} \\ & t=0.13 \mathrm{~s} \end{aligned}$	(1) (1)	2
	Total for question 15		11

